一、数列极 限的证明 数列极 限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极 限的证明,用到的方法是单调有界准则。 二、微分中值定理的相关证明 微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理: 1.零点定理和介质定理; 2.微分中值定理; 包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。 3.微分中值定理 积分中值定理的作用是为了去掉积分符号。 在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。 三、方程根的问题 包括方程根唯一和方程根的个数的讨论。 四、不等式的证明 五、定积分等式和不等式的证明 主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。 六、积分与路径无关的五个等价条件 (转载文章) |
Copyright 2013-2014, www.cnky.cn, All Rights Reserved 考研网 版权所有 未经许可不得转载与复制 热线电话:13911934741 联系人:周老师 E-mail:624924297@qq.com 京ICP备11038375号-4 京公网安备11011602000466 |